While machine learning models have achieved unprecedented success in real-world applications, they might make biased/unfair decisions for specific demographic groups and hence result in discriminative outcomes. Although research efforts have been devoted to measuring and mitigating bias, they mainly study bias from the result-oriented perspective while neglecting the bias encoded in the decision-making procedure. This results in their inability to capture procedure-oriented bias, which therefore limits the ability to have a fully debiasing method. Fortunately, with the rapid development of explainable machine learning, explanations for predictions are now available to gain insights into the procedure. In this work, we bridge the gap between fairness and explainability by presenting a novel perspective of procedure-oriented fairness based on explanations. We identify the procedure-based bias by measuring the gap of explanation quality between different groups with Ratio-based and Value-based Explanation Fairness. The new metrics further motivate us to design an optimization objective to mitigate the procedure-based bias where we observe that it will also mitigate bias from the prediction. Based on our designed optimization objective, we propose a Comprehensive Fairness Algorithm (CFA), which simultaneously fulfills multiple objectives - improving traditional fairness, satisfying explanation fairness, and maintaining the utility performance. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed CFA and highlight the importance of considering fairness from the explainability perspective. Our code is publicly available at https://github.com/YuyingZhao/FairExplanations-CFA .
translated by 谷歌翻译
图形神经网络(GNN)已通过隐式捕获协作效应的消息通知成功地采用了推荐系统。然而,大多数现有的推荐消息机制是直接从GNN继承的,而无需仔细检查捕获的协作效果是否会受益于用户偏好的预测。在本文中,我们首先分析了消息传播如何捕获协作效应,并提出了面向建议的拓扑指标,共同的相互作用比率(CIR),该比例(CIR)衡量了节点的特定邻居与其其余邻居之间的相互作用水平。在证明了利用邻居与高级CIR合作的好处之后,我们提出了一项推荐销售的GNN,协作意识图形卷积网络(CAGCN),它超出了1-Weisfeiler-Lehman(1-WL)测试,以区分非优质 - 图形图形。六个基准数据集的实验表明,最佳CAGCN变体的表现优于最具代表性的基于GNN的建议模型LightGCN,在Recess@20中的近10%,并且达到了80 \%的加速。我们的代码可在https://github.com/yuwvandy/cagcn上公开获取。
translated by 谷歌翻译
图神经网络(GNN)在图形上学习节点表示方面表现出很大的力量。但是,他们可能会从训练数据中继承历史偏见,从而导致预测的歧视性偏见。尽管某些工作已经开发出公平的GNN,但其中大多数直接从非图形域借用了公平代表性学习技术,而没有考虑GNN中特征传播引起的敏感属性泄漏的潜在问题。但是,我们从经验上观察到,特征传播可能会改变以前无害特征与敏感特征的相关性。这可以看作是敏感信息的泄漏,可以进一步加剧预测中的歧视。因此,我们根据特征相关性设计了两个特征掩盖策略,以突出考虑特征传播和相关性变化在减轻歧视中的重要性。通过我们的分析,我们提出了公平视图图神经网络(FAIRVGNN),以通过自动识别和掩盖敏感的相关特征来生成特征的公平视图,以考虑特征传播后的相关变化。鉴于博学的公平视图,我们适应编码器的夹紧权重,以避免使用敏感相关的功能。现实世界数据集的实验表明,Fairvgnn在模型实用程序和公平性之间取得了更好的权衡。我们的代码可在https://github.com/yuwvandy/fairvgnn上公开获取。
translated by 谷歌翻译
图形神经网络(GNNS)在学习图表表示中取得了前所未有的成功,以识别图形的分类标签。然而,GNN的大多数现有图形分类问题遵循平衡数据拆分协议,这与许多真实情景中的许多实际方案都有比其他类别更少的标签。在这种不平衡情况下直接培训GNN可能导致少数群体类别中的图形的无色表达,并损害下游分类的整体性能,这意味着开发有效GNN处理不平衡图分类的重要性。现有方法是针对非图形结构数据量身定制的,或专为不平衡节点分类而设计,而少数关注不平衡图分类。为此,我们介绍了一个新颖的框架,图形图形 - 图形神经网络(G $ ^ 2 $ GNN),通过从邻近图和本地从图形本身来源地通过全局导出额外的监督来减轻图形不平衡问题。在全球范围内,我们基于内核相似性构建图表(GOG)的图表,并执行GOG传播以聚合相邻图形表示,其最初通过通过GNN编码器汇集的节点级传播而获得。在本地,我们通过掩模节点或丢弃边缘采用拓扑增强,以改善辨别说明书测试图的拓扑结构中的模型概括性。在七个基准数据集中进行的广泛图形分类实验证明了我们提出的G $ ^ $ ^ 2 $ GNN优于F1-Macro和F1-Micro Scores的大约5 \%的大量基线。 G $ ^ 2 $ GNN的实现可用于\ href {https://github.com/yuwvandy/g2gnn} {https://github.com/yuwvandy/g2gnn}。
translated by 谷歌翻译
Recent progress on vision-language foundation models have brought significant advancement to building general-purpose robots. By using the pre-trained models to encode the scene and instructions as inputs for decision making, the instruction-conditioned policy can generalize across different objects and tasks. While this is encouraging, the policy still fails in most cases given an unseen task or environment. To adapt the policy to unseen tasks and environments, we explore a new paradigm on leveraging the pre-trained foundation models with Self-PLAY and Self-Describe (SPLAYD). When deploying the trained policy to a new task or a new environment, we first let the policy self-play with randomly generated instructions to record the demonstrations. While the execution could be wrong, we can use the pre-trained foundation models to accurately self-describe (i.e., re-label or classify) the demonstrations. This automatically provides new pairs of demonstration-instruction data for policy fine-tuning. We evaluate our method on a broad range of experiments with the focus on generalization on unseen objects, unseen tasks, unseen environments, and sim-to-real transfer. We show SPLAYD improves baselines by a large margin in all cases. Our project page is available at https://geyuying.github.io/SPLAYD/
translated by 谷歌翻译
Full electronic automation in stock exchanges has recently become popular, generating high-frequency intraday data and motivating the development of near real-time price forecasting methods. Machine learning algorithms are widely applied to mid-price stock predictions. Processing raw data as inputs for prediction models (e.g., data thinning and feature engineering) can primarily affect the performance of the prediction methods. However, researchers rarely discuss this topic. This motivated us to propose three novel modelling strategies for processing raw data. We illustrate how our novel modelling strategies improve forecasting performance by analyzing high-frequency data of the Dow Jones 30 component stocks. In these experiments, our strategies often lead to statistically significant improvement in predictions. The three strategies improve the F1 scores of the SVM models by 0.056, 0.087, and 0.016, respectively.
translated by 谷歌翻译
Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.
translated by 谷歌翻译
我们通过严格的数学论点建设性地展示了GNN在紧凑型$ d $维欧几里得网格上的近似频带限制功能中的架构优于NN的架构。我们表明,前者只需要$ \ MATHCAL {m} $采样函数值就可以实现$ o_ {d}的均匀近似错误(2^{ - \ \ m athcal {m} {m}^{1/d/d/d}}}}} $从某种意义上说,这个错误率是最佳的,NNS可能会取得更糟的情况。
translated by 谷歌翻译
多模式单细胞技术的最新进展已使从同一细胞中的多个OMICS数据同时采集,从而更深入地了解细胞状态和动力学。但是,从多模式数据,模拟模式之间的关系并更重要的是,将大量的单模式数据集纳入下游分析是一项挑战。为了应对这些挑战并相应地促进了多模式的单细胞数据分析,已经引入了三个关键任务:$ \ textit {模式预测} $,$ \ textit {modital {modital {modational conterative} $和$ \ textit {intimit {interion {intim interding} $。在这项工作中,我们提出了一个通用图形神经网络框架$ \ textit {scmognn} $来解决这三个任务,并表明$ \ textit {scmognn} $与最新的任务相比,在所有三个任务中都表现出了卓越的结果。艺术和传统方法。我们的方法是\ textit {模式预测}的整体排名的官方获奖者,来自神经2021竞赛\ footNote {\ url {https://openproblems.bio/neurips_2021/}},我们的所有方法都已整合到我们的所有实现中舞蹈软件包\ footNote {\ url {https://github.com/omicsml/dance}}}。
translated by 谷歌翻译
跳舞视频retargeting旨在综合传输从源视频到目标人物的舞蹈移动的视频。以前的工作需要收集有几分钟的目标人物,以训练个性化模型的数千帧。但是,训练有素的模型只能生成同一个人的视频。为了解决限制,最近的工作解决了几次跳舞的视频retargeting,这将通过利用其中几帧来综合看不见的人的视频。在实践中,给出了一个人的几个框架,这些工作只是将它们视为一批没有时间相关性的单个图像,从而产生了低视觉质量的时间上不连贯的跳舞视频。在这项工作中,我们将一个人的一些框架模拟了一系列跳舞的移动,其中每个移动包含两个连续帧,以提取这个人的外观模式和时间动态。我们提出了通过跳舞移动的合成优化模型的初始化,从而利用时间感知的元学习,使得元训练模型可以朝着增强的视觉质量和加强不良人员的时间稳定性地调整。很少的框架。广泛的评估显示了我们的方法的大量优势。
translated by 谷歌翻译